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Abstract

A rapid and efficient one-pot method for the synthesis of 2-(N-substituted)-aminobenzimidazoles is described. The reaction is pro-
moted by dithiocarbamate and catalytic CuO. This procedure is general and can be applied to synthesize many potential drug candidates.
� 2007 Elsevier Ltd. All rights reserved.
2-(N-Substituted)-aminobenzimidazoles are widely used
structural motifs in medicinal chemistry as well as in drug
discovery and can be found in a number of biologically
active molecules.1 Several compounds from this class have
been used as anticancer,1d antihistamine1e and antiviral
agents.2 Some examples of pharmaceutical interest are
shown below (Fig. 1).

Therefore, an efficient practical method for the synthesis
of a diverse collection of aminobenzimidazoles would be of
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great value for drug discovery. Several synthetic methodol-
ogies have been reported in the literature for the synthesis
of 2-aminobenzimidazoles. Most involve formation of thio-
ureas using isothiocyanates followed by cyclodesulfuri-
zation using desulfurizing agents such as mercury(II)
oxide,3 mercury(II) chloride,4 copper(I) chloride,5 methyl
iodide,6 tosyl chloride,7 dicyclohexylcarbodiimide (DCC)8

and PS-carbodiimide9 (Fig. 2).
Most of the above reagents are either expensive or

highly toxic in nature and commonly require cumbersome
work-up and purification procedures. Apart from these
toxic agents, the synthesis of isothiocyanates requires the
use of highly toxic thiophosgene. Moreover, disadvantages
with isothiocyanates are that they are unstable if stored for
long periods.

We were particularly interested in the synthesis of 2-
aminobenzimidazoles via a method suitable for large scale
preparations as well as not requiring toxic starting materi-
als and reagents.
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Table 2
Cyclization of diamines with various dithiocarbamates

Entry Reactant Product Time
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(%)
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a Isolated yields. All the compounds were characterized by IR, 1H
NMR, 13C NMR spectroscopy and mass spectrometry.
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Herein, we report a highly efficient copper(II) oxide
mediated one-pot synthesis of 2-aminobenzimidazoles
using various substituted diamines and substituted dithio-
carbamates. Unlike isothiocyanates, dithiocarbamates are
highly stable and easy to handle. They are easy to synthe-
size in large quantities using readily available substituted
anilines.10 The initial experiments were performed with
commercially available o-phenylenediamines and methyl-
N-aryldithiocarbamate using CuO (0.2 equiv)11 and
K2CO3 in DMF at 60 �C for 1–2 h. The desired 2-amino-
benzimidazole was isolated in good yield.12 We also inves-
tigated this methodology with respect to different diamines
and dithiocarbamates (Table 1). Several functionalized 2-
aminobenzimidazoles were synthesized from structurally
diverse diamines. The reaction gave good yields with both
electron-withdrawing groups (entries 11 and 14) and elec-
tron-donating groups (entry 6).

The procedure could also be applied to other diamine
moieties, providing quinazolines and purine-like products
in good yields (Table 2).

In connection with a drug discovery program, we
recently required an efficient synthetic protocol into the
new class of trisubstituted purines known as Aurora-A
Kinase inhibitors.13 To synthesize this class of compound
we applied this methodology (Scheme 1). Thus, condensa-
Table 1
Synthesis of 2-aminobenzimidazoles from various diamines and dithio-
carbamates

R1
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NH2
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R1

R2

+

K2CO3 (2 eq) , CuO (0.2 eq)

60 oC , DMF, 1-2 h 
R3

R4

Entry R1 R2 R3 R4 Time (h) Yielda (%)

1 CH3 H H H 0.5 78
2 CH3 H Cl H 1 70
3 CH3 H OCH3 OCH3 0.5 76
4 OCH3 H H H 0.5 80
5 OCH3 H Cl H 0.5 75
6 OCH3 H OCH3 OCH3 0.5 82
7 F H H H 1 72
8 F H Cl H 1.5 70
9 F H OCH3 OCH3 0.5 76

10 Cl Cl H H 1.5 70
11 Cl Cl Cl H 1.5 69
12 Cl Cl OCH3 OCH3 1 70
13 NO2 H H H 1.5 75
14 NO2 H Cl H 1.5 75
15 NO2 H OCH3 OCH3 1 78

a Isolated yields. All the compounds were characterized by IR, 1H
NMR, 13C NMR spectroscopy and mass spectrometry.
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Scheme 1. Reagents and conditions: (a) CuO, K2CO3, DMF, 60 �C, 2 h.

Table 3
Trisubstituted purines

Compound R1 R2 R3 Yielda (%)
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tion of 2,4,5-trisubstituted pyrimidines 114 with dithiocarb-
amates 2 in the presence of CuO (0.2 equiv) and K2CO3 in
DMF at 60 �C for 2 h furnished the desired substituted
purines 3–7 (Table 3) in good yields.15

In conclusion, we have developed an efficient and prac-
tical procedure for the synthesis of a wide variety of 2-(N-
substituted)-aminobenzimidazoles using a catalytic amount
of CuO and nontoxic dithiocarbamate. This procedure can
be scaled-up and can be applied to synthesize many poten-
tial drug candidates.
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3.65 (s, 3H), 3.09 (m, 4H), 2.50 (s, 3H), 2.49–2.44 (m, 4H); 13C NMR
(DMSO-d6, 50 MHz) d 153.87, 153.48, 150.89,146.42, 140.80, 140.60,
131.97, 128.12, 127.89, 123.30, 119.97, 119.03, 115.84, 54.65, 48.76,
45.72, 27.57; MS (ESI) 449 (M+H+); HRMS calcd for C23H26N8Cl
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7.65 (d, J = 9.2 Hz, 2H), 7.57 (m, 3H), 6.96 (d, J = 8.8 Hz, 2H), 3.76
(m, 4H), 3.66 (s, 3H), 3.07 (m, 4H); 13C NMR (DMSO-d6, 50 MHz) d
164.98, 154.38, 153.50, 150.62, 146.35, 141.09, 137.73, 135.17, 132.42,
131.89, 131.23, 128.27, 127.49, 120.97, 119.89, 117.79, 115.65, 66.14,
49.20, 27.56; MS (ESI) 521 (M+H+); HRMS calcd for C29H29N8O2

[M+H+] 521.2413, found: 521.2413.
Compound 7. White solid; mp 300–302 �C; IR (KBr, cm�1) 3314,
3094, 2962, 2847, 1664, 1613, 1588, 1522, 1437, 1409, 1315; 1H NMR
(DMSO-d6, 400 MHz) d 10.07 (s, 1H), 9.03 (d, J = 12.8 Hz, 2H), 8.29
(s, 1H), 7.79 (d, J = 9.2 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 7.55 (d,
J = 8.8 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 3.75 (m, 4H), 3.64 (s, 3H),
3.30 (m, 4H), 1.78 (m, 1H), 0.80 (m, 4H); 13C NMR (DMSO-d6,
50 MHz) d 171.11, 154.87, 153.41, 149.98, 145.29, 141.55, 134.30,
133.65, 126.95, 119.53, 119.16, 118.75, 115.80, 66.18, 49.55, 27.53,
14.38, 6.88; MS (ESI) 485 (M+H+); HRMS calcd for C26H29N8O2

[M+H+] 485.2413, found: 485.2425.
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